Wildlife 311/511 – Quantitative Methods for Wildlife and Fisheries Research and Management 2019 Spring – Tentative Course Syllabus

Professor: Jason Riddle

Office: TNR 265

Phone: 715-346-3224

Email: Jason.Riddle@uwsp.edu

Office Hours: Wednesdays 12-2:00pm, or by appointment

Class Meeting Times: Section 1 (Tuesdays and Thursdays 12:30PM-1:45PM TNR 352)

Section 2 (Tuesdays and Thursdays 2:00PM-3:15PM TNR 352).

Learning Outcomes: I don't want you to be afraid of statistics. I want you to love them and understand how they can help you as a natural resource manager/scientist. Students who satisfactorily complete this course should be able to:

- 1) Define what statistics are and why we need them;
- 2) Recognize different data types and choose appropriate graphing techniques for each type;
- 3) Apply and communicate some basic fundamentals of sampling and experimental design;
- 4) Recognize the close relationship between management and experimentation;
- 5) Design your own simple experiments and critique other's experimental design;
- 6) Select the most appropriate parametric and non-parametric tests for a particular hypothesis; and
- 7) Communicate some of the current and future trends in Wildlife statistics.

Prerequisites/Co-requisite: MATH 355 – Elementary Statistical Methods. It also will be helpful if you already have taken a Calculus course.

Textbook: The required text book for this course is McKillup (2011) *Statistics Explained: An Introductory Guide for Life Scientists*, 2nd Edition, Cambridge University Press. The book is available as a rental, but I <u>highly recommend</u> that you purchase a copy of your own.

Desire2Learn: Most course material and your grades will be available on Desire2Learn (D2L).

Classroom Climate: It is critical that you feel comfortable exploring your own ideas and asking questions in this class. Please help me to create a classroom that facilitates questions and conversations about the material.

Course Schedule:

Week 11

4/2

4/4

Follow-up tests (Chapter 12)

Two factor ANOVA (Chapter 13)

Week	1	
	1/22	Introduction to the course
	1/24	Why bother with statistics? (Chapters 1 and 2)
Week	2	
	1/29	Hypotheses, sample collection, and experimental design (Chapters 3 and 4)
	1/31	Hypotheses, sample collection, and experimental design (Chapters 3 and 4)
Week	3	
	2/5	Hypotheses, sample collection, and experimental design (Chapters 3 and 4)
	2/7	Hypotheses, sample collection, and experimental design (Chapters 3 and 4)
Week	4	
	2/12	Data types, visualization, and communication (Chapter 3)
	2/14	To Be Determined
Week	5	
	2/19	Data types, visualization, and communication (Chapter 3) & Some probability basics (Chapters 6 and 7)
	2/21	Exam 1
Week	6	
	2/26	Introduction to Parametric Statistics and descriptive statistics for populations and samples
	2/28	Descriptive statistics for populations and samples
Week	7	
	3/5	Z-tests and t-tests (Chapters 9 and 10)
	3/7	To Be Determined
Week	8	
	3/12	Z-tests and t-tests (Chapters 9 and 10)
	3/14	Z-tests and t-tests (Chapters 9 and 10)
Week	9	
	3/19	SPRING BREAK
	3/21	SPRING BREAK
Week	10	
	3/26	Single factor ANOVA (Chapter 11)
	3/28	Single factor ANOVA (Chapter 11)

Week 12

4/9 Exam 2

4/11 Simple linear regression (Chapters 16 and 17)

Week 13

4/16 Simple linear regression (Chapters 16 and 17)

4/18 Introduction to Nonparametric Statistics and Chi-square tests

Week 14

4/23 Chi-square tests & Mann-Whitney test (Chapter 21)

4/25 Mann-Whitney test (Chapter 21) and Kruskal-Wallis test

Week 15

4/30 Information-Theoretic approaches

5/2 Information-Theoretic approaches

Week 16

5/7 Undergraduate presentations (Chapter 5)

5/9 Bayesian approaches

Final Exam

Section 1: Thursday, May 16th from 12:30PM to 2:30PM

Section 2: Wednesday, May 15th from 5:00PM to 7:00PM

Assignments and Scoring:

Written Assignment	50pts		
Exam 1	100pts		
Exam 2	100pts		
Group Project	150pts		
Problem Sets	250pts		
Final Exam	200pts		
Total	850pts		

Grade	%			
Α	93+			
A-	90-92			
B+	87-89			
В	83-86			
B-	80-82			
C+	77-79			
С	73-76			
C-	70-72			
D+	67-69			
D	60-66			
F	≤ 59			